On the Connections Between Bridge Distributions, Marginalized Multilevel Models, and Generalized Linear Mixed Models
نویسندگان
چکیده
Generalized linear mixed models (GLMM) are commonly used to analyze hierarchical data. Unlike linear mixed models, they do not automatically provide parametric marginal regression functions, while such functions are needed for population-averaged inferences. This issue has received considerable attention and here three approaches to address it are reviewed, expanded, and compared: (1) the closed-form expressions of the marginal moments and distributions for a variety of GLMMs, derived by Molenberghs et al. (2010), as well as an extension that accommodates overdispersion; (2) the marginalized multilevel models of Heagerty (1999); (3) the bridge distribution of Wang and Louis (2003), a form for the random-effects distribution that allows the conditional and hierarchical mean to be described by the same link function. Our derivations are for the identity link function, the log link, and a collection of links for binary data. We highlight a number of useful connections: (a) it is shown that the bridge distribution for data with a mean on the unit interval is unique; (b) the three approaches are different for unit-interval data with the logit link, but are connected for the probit link; for the latter, there exist closed forms; (c) further results are derived for the bridge distribution in the case of unit-interval data and a Student’s t link; (d) in contrast to the unit-interval case, it is shown how large classes of distributions act as bridge distributions when an identity or a logarithmic link is adopted; (e) for these links, the three approaches are either identical or closely connected; (f) it is underscored for a random-intercepts model and logarithmic link, that the data contain no information about the particular distribution for the random intercept, given that the same fit to the data can be ascribed to an entire class of random-intercept distribution; (g) the implications of the difference between the unit-interval case on the one hand and the identity and logarithmic cases on the other, regarding sensitivity to model assumptions, are discussed.
منابع مشابه
The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملP´olya Urn Models and Connections to Random Trees: A Review
This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...
متن کاملMultilevel models with multivariate mixed response types
We build upon the existing literature to formulate a class of models for multivariate mixtures of Gaussian, ordered or unordered categorical responses and continuous distributions that are not Gaussian, each of which can be defined at any level of a multilevel data hierarchy. We describe a Markov chain Monte Carlo algorithm for fitting such models. We show how this unifies a number of disparate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013